Cancer Classification Using Neural Network
نویسندگان
چکیده
Naturally, cells in human body grow and divide in a controlled way to produce more cells to maintain health. Cancer affects human body when abnormal cells divide without control and becomes able to invade other tissues. The genetic material (DNA) of these cells becomes damaged or changed that affects normal cell growth and division. Early diagnosis is of considerable significance of the physician's skills conducted based on their knowledge and experience yet an error might occur. A range of therapies have been provided by researchers already. Use of various Artificial Intelligence methods for medical diagnosis of diseases has recently become widespread. These intelligent systems help physicians as a diagnosis assistant. Now, various Artificial Neural Network, Rough Set, Decision Tree, Bayesian Network are very popular for this purpose. In this paper, Multi layer Feed Forward Neural Network was used to detect cancer from Microarray Data and UCI Machine Learning Data. Back Propagation Rule was used for training the model. Throughout this paper, two types of validations were performed: cross validation and new case testing for above two datasets with different combination of hidden layers and corresponding nodes. It was found that, NN model can classify the data with very good accuracy and this will lead to automated medical diagnosis system for the particular disease.
منابع مشابه
Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملDetection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملNon-melanoma skin cancer diagnosis with a convolutional neural network
Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...
متن کاملPatterns Prediction of Chemotherapy Sensitivity in Cancer Cell lines Using FTIR Spectrum, Neural Network and Principal Components Analysis
Drug resistance enables cancer cells to break away from cytotoxic effect of anticancer drugs. Identification of resistant phenotype is very important because it can lead to effective treatment plan. There is an interest in developing classifying models of resistance phenotype based on the multivariate data. We have investigated a vibrational spectroscopic approach in order to characterize a...
متن کاملPatterns Prediction of Chemotherapy Sensitivity in Cancer Cell lines Using FTIR Spectrum, Neural Network and Principal Components Analysis
Drug resistance enables cancer cells to break away from cytotoxic effect of anticancer drugs. Identification of resistant phenotype is very important because it can lead to effective treatment plan. There is an interest in developing classifying models of resistance phenotype based on the multivariate data. We have investigated a vibrational spectroscopic approach in order to characterize a...
متن کاملApplying Two Computational Classification Methods to Predict the Risk of Breast Cancer: A Comparative Study
Introduction: Lack of a proper method for early detection and diagnostic errors in medicine are some fundamental problems in treating cancer. Data analysis techniques may significantly help early diagnosis. The current study aimed at applying and evaluating neural networks and decision tree algorithm on breast cancer patients’ data for early cancer prediction. Methods: In the current stu...
متن کامل